String a is 35 centimeters long. String B is 5 times as long as string A. Both are necessary to create a decorative bottle. Find the total length of string needed for 17 identical decorative bottles. Express your answer I'm meters

Accepted Solution

Answer:Total length of string required for [tex]17[/tex] decorative bottles [tex]= 35.7\ m[/tex]Step-by-step explanation:Length of string A = [tex]35\ cm =\frac{35}{100} =0.35\ m[/tex]Length of string B = [tex]5\times A[/tex] = [tex]35\times 5 =175\ cm = \frac{175}{100} = 1.75\ m[/tex]Total length of the string required for decorating one bottle = Summation of string A and String B,used [tex]=1.75+0.35 = 2.10\ m[/tex]To find the string needed for [tex]17[/tex] bottles we will multiply the strings used for [tex]1[/tex] bottle with [tex]17[/tex].So [tex]2.10\times 17 =35.7\ m[/tex].The total length of string needed for [tex}17{/tex} bottles is [tex]=35.7\ m[/tex].